圣阳蓄电池GFM-1000C 2V1000AH
圣阳蓄电池主要应用领域:
浮充使用:
通讯及电力设备
紧急照明器材
警示系统
各种测距仪器
办公室电脑、微电脑处理机及OA设备
UPS/EPS电源
变、发电站紧急电源系统
医疗器械
循环使用:
便携式电源、录放机、收音机等
电动玩具、割草机、吸尘器等各种电动工具
摄像机
手提式测量器
照明器材
各类信号系统
太阳能、风能储能系统
而言,中国的固态电池进展更快。在研发层面,中科院宁波材料技术与工程研究所牵头承担的纳米先导专项“全固态电池”课题在2018年年底通过验收。
在企业方面,中国动力电池企业和车企也表示了较浓厚的兴趣。
在上市公司领域,当升科技表示,已开展前瞻性开发工作,预计2025年以后固态锂电可逐步实现产业化;宁德时代公司在聚合物固态锂金属电池和硫化物基固态电池方向分别开展相关研发工作并取得了初步进展,其在固态电池上的思路是对正极材料做了保护,提高兼容性问题;比亚迪公司于2017年8月申请了相关发明**,表示积极推进固态电池项目商用;赣锋锂业2018年3月宣称,正在对固态电池进行广泛试验,将在2019年上半年建成**代固态锂电池生产线,在2019年12月完成3亿元固态锂电池销售,并推动*二代固态锂电池技术成熟化,实现*三代固态锂电池可研。
在创业公司领域,拥有中科院物理所背景,由中国工程院院士陈立泉、北汽新能源前高管俞会根投资的卫蓝新能源科技有限公司,在江苏溧阳成立了江苏卫蓝新能源电池有限公司,正在建设电池中试线;已经完成B轮融资的清陶(昆山)能源发
圣阳蓄电池特点:
较柱和端子合二为一,镀银纯铜较柱,更合适大电流放电;
少有的较柱密封技能,确保电池绝不走漏;
高倍率放电性能好,内阻小,自放电率低,运用寿命长达15年;
共同内部结构规划,确保接受较板胀大的空间,也有利于避免电解液干枯;
选用了特别的安全气阀及隔火膜,具备主动密封及防爆才能;
内部催化室和高复合率的特别规划,特别的吸液纤维隔阂,气体复合率挨近**亢电时,正极板栅中的锑在电解液中,会转移到负极,沉积在活性物质表面,下降 析氢过电位,因而锑的存在下降了水的分化电压,加重了水的分化和寄存时蓄电池自放电。 不能到达免维护要求。当合金的锑含量为≥3%时,水分化和自放电较为显着,用该合金生 产的蓄电池有必要守时(如两个月)进行一次补偿充电和补水。合金锑含量≤1.5%时,充电 时水分化显着下降,能够制造少维护的蓄电池。
圣阳蓄电池基本特征:
1. 容量范围(C20):3.5Ah—250Ah(25℃)
2. 电压等级:12V
3. 自放电小:≤2%/月(25℃)
4. 良好的高率放电性能
5. 设计寿命长:20Ah以下为5年、20Ah以上为10年(25℃)
6. 密封反应效率:≥98%
7. 工作温度范围宽:-15℃~45℃
圣阳蓄电池技术优势:
* 高可靠的工业** 从内至外的优良设计
* 高档灰色外壳,体积小,重量轻,能量密度高,输出功率大
* 精密技术生产,使用寿命长,自放电率较低(小于3%每月)
* 特殊配方的铅钙合金及电解液,品质稳定,不污染环境
* **音波密封外壳,免维护,免加水,使用可靠性高
* 内阻较小,回充容易,大电流放电性能优越
* 全自动流水线制造,一致性好,可任意成组使用
* 高压缩玻璃棉吸液式(AGM)技术
* 内藏防爆装置,采用超声波焊接技术加强蓄电池的密闭性
* 高级铅-锡-钙-银正极合金,有较强大电流放电后回充性及抗侵蚀能力
* 内藏式接电端子,连接牢固不易受损
* 置放时不受方向、位置之,环境温度广泛
* 较适用在高功率的精密机械及高性能的UPS不断电系统
圣阳蓄电池技术特点:
防溢密闭结构吸收式玻璃板装置 (AGM结构)ABS (树脂) 箱体,阻燃材料盖(UL94, V-0 级)气体复合免维护作低压通风装置热负载网格低自放电率,**命使用环境温度范围广高恢复性20℃下,使用寿命为8~10年 一电汽车铅酸蓄电池
产品吸收了欧洲的矮型标准结构 流线型结构 美观大方
*特的较板伸长自吸收 技术 可延长蓄电池的使用寿命
采用*特的设计 电池再使用过程中电液量几乎不会减少 使用寿命期间完全*加水
采用*特的耐腐蚀板栅合计 特殊的前高配方 电池具有**的的过放电恢复能力 俯冲使用寿命更长
放射状的板栅设计,采用紧装配技术,具有优良的高率放电性能。
深循环电池设计,采用4BS铅膏技术电池循环寿命长。
采用*特的板栅合金 特殊的铅膏配方一级*特的正负铅膏配比设计 电池具有优异深循环性能和过放电恢复能力
全部采用高纯原材料,电池自放电极小
采用气体再化和技术,电池具有较高的密封反应效率、无酸雾析出、安全环保、无污染。
圣阳蓄电池2V系列规格参数详情:
|
产品型号 |
额定电压(V) |
10h率容量(Ah) |
长(mm) |
宽(mm) |
高(mm) |
总高(mm) |
重量(kg) |
短路电流(A) |
参考内阻(mΩ) |
端子类型 |
|
GFM-100C |
2 |
100 |
172.5 |
65 |
204.5 |
212.5 |
5.3 |
2700 |
0.65 |
GFM-25 |
|
GFM-200C |
2 |
200 |
89.5 |
179 |
367 |
377 |
13.4 |
2500 |
0.75 |
GFM-21 |
|
GFM-300C |
2 |
300 |
122.5 |
179 |
367 |
377 |
18.5 |
3400 |
0.58 |
GFM-21 |
|
GFM-400C |
2 |
400 |
155.5 |
179 |
367 |
377 |
24.0 |
4600 |
0.43 |
GFM-21 |
|
GFM-500C |
2 |
500 |
188.5 |
179 |
367 |
377 |
29.0 |
4800 |
0.4 |
GFM-21 |
|
GFM-600C |
2 |
600 |
222.5 |
180 |
367 |
377 |
34.5 |
5300 |
0.35 |
GFM-21 |
|
GFM-800C |
2 |
800 |
289.5 |
180 |
367.5 |
377.5 |
46.0 |
7000 |
0.34 |
GFM-21 |
|
GFM-1000C |
2 |
1000 |
369 |
180 |
367.5 |
377.5 |
58.5 |
8200 |
0.38 |
GFM-21 |
|
GFM-1200C |
2 |
1200 |
510 |
175 |
338 |
347 |
70.5 |
9000 |
0.16 |
GFM-21 |
|
GFM-1500C |
2 |
1500 |
318 |
341 |
341 |
351 |
86.5 |
11500 |
0.18 |
GFM-27 |
|
GFM-2000C |
2 |
2000 |
433 |
342 |
341 |
351 |
118.0 |
13400 |
0.10 |
GFM-27 |
|
GFM-3000C |
2 |
3000 |
629 |
346 |
341 |
351 |
174.0 |
20000 |
0.09 |
GFM-27 |
虽然固态电池具有高安全性、高能量密度、循环次数高、相对较轻等特点,但界面阻抗大(电解质跟材料界面是固—固状态,不利于锂离子传输)、快充难度大(高阻抗、低导电率导致内阻大)、成本高等一系列问题尚待解决。”劲邦资本合伙人王荣进如此分析。
中科院青岛生物能源与过程研究所研究员崔光磊认为,现在的固态电池还停留在研发阶段,主要是因为固态电池存在容量衰减、内阻增加、内路短、热失控、日历等失效行为,降低了电池的能量密度、功率密度、循环寿命、安全性和可靠性。
从实操的角度来看,清陶新能源材料研究院院长何泓材认为,固态电池研发和生产的挑战主要在于:高离子导电率固态电解质材料的开发、固体与固体之间的接触界面高阻抗和稳定性、固态电池特需设备的开发等。只有对这些挑战都找到解决方案,固态电池才能够实现量产。不少创业公司可能仅仅在其中一两点上有自己的解决方案,较终还是没能实现固态电池的产业化。
青域基金创始人徐政军的解释是,国内虽然有不少科研院所、产业**都在布局研发,但大都还在实验室样品阶段。媒体宣传的所谓固态电池,都不是真正的“